Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome Editing in Trees: From Multiple Repair Pathways to Long-Term Stability.

Identifieur interne : 000E74 ( Main/Exploration ); précédent : 000E73; suivant : 000E75

Genome Editing in Trees: From Multiple Repair Pathways to Long-Term Stability.

Auteurs : William Patrick Bewg [États-Unis] ; Dong Ci [États-Unis, République populaire de Chine] ; Chung-Jui Tsai [États-Unis]

Source :

RBID : pubmed:30532764

Abstract

The CRISPR technology continues to diversify with a broadening array of applications that touch all kingdoms of life. The simplicity, versatility and species-independent nature of the CRISPR system offers researchers a previously unattainable level of precision and control over genomic modifications. Successful applications in forest, fruit and nut trees have demonstrated the efficacy of CRISPR technology at generating null mutations in the first generation. This eliminates the lengthy process of multigenerational crosses to obtain homozygous knockouts (KO). The high degree of genome heterozygosity in outcrossing trees is both a challenge and an opportunity for genome editing: a challenge because sequence polymorphisms at the target site can render CRISPR editing ineffective; yet an opportunity because the power and specificity of CRISPR can be harnessed for allele-specific editing. Examination of CRISPR/Cas9-induced mutational profiles from published tree studies reveals the potential involvement of multiple DNA repair pathways, suggesting that the influence of sequence context at or near the target sites can define mutagenesis outcomes. For commercial production of elite trees that rely on vegetative propagation, available data suggest an excellent outlook for stable CRISPR-induced mutations and associated phenotypes over multiple clonal generations.

DOI: 10.3389/fpls.2018.01732
PubMed: 30532764
PubMed Central: PMC6265510


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome Editing in Trees: From Multiple Repair Pathways to Long-Term Stability.</title>
<author>
<name sortKey="Bewg, William Patrick" sort="Bewg, William Patrick" uniqKey="Bewg W" first="William Patrick" last="Bewg">William Patrick Bewg</name>
<affiliation wicri:level="2">
<nlm:affiliation>Warnell School of Forestry and Natural Resources, Department of Genetics, and Department of Plant Biology, University of Georgia, Athens, GA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Warnell School of Forestry and Natural Resources, Department of Genetics, and Department of Plant Biology, University of Georgia, Athens, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ci, Dong" sort="Ci, Dong" uniqKey="Ci D" first="Dong" last="Ci">Dong Ci</name>
<affiliation wicri:level="2">
<nlm:affiliation>Warnell School of Forestry and Natural Resources, Department of Genetics, and Department of Plant Biology, University of Georgia, Athens, GA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Warnell School of Forestry and Natural Resources, Department of Genetics, and Department of Plant Biology, University of Georgia, Athens, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Bioscience and Biotechnology, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Bioscience and Biotechnology, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
<affiliation wicri:level="2">
<nlm:affiliation>Warnell School of Forestry and Natural Resources, Department of Genetics, and Department of Plant Biology, University of Georgia, Athens, GA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Warnell School of Forestry and Natural Resources, Department of Genetics, and Department of Plant Biology, University of Georgia, Athens, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30532764</idno>
<idno type="pmid">30532764</idno>
<idno type="doi">10.3389/fpls.2018.01732</idno>
<idno type="pmc">PMC6265510</idno>
<idno type="wicri:Area/Main/Corpus">000B40</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B40</idno>
<idno type="wicri:Area/Main/Curation">000B40</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000B40</idno>
<idno type="wicri:Area/Main/Exploration">000B40</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genome Editing in Trees: From Multiple Repair Pathways to Long-Term Stability.</title>
<author>
<name sortKey="Bewg, William Patrick" sort="Bewg, William Patrick" uniqKey="Bewg W" first="William Patrick" last="Bewg">William Patrick Bewg</name>
<affiliation wicri:level="2">
<nlm:affiliation>Warnell School of Forestry and Natural Resources, Department of Genetics, and Department of Plant Biology, University of Georgia, Athens, GA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Warnell School of Forestry and Natural Resources, Department of Genetics, and Department of Plant Biology, University of Georgia, Athens, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ci, Dong" sort="Ci, Dong" uniqKey="Ci D" first="Dong" last="Ci">Dong Ci</name>
<affiliation wicri:level="2">
<nlm:affiliation>Warnell School of Forestry and Natural Resources, Department of Genetics, and Department of Plant Biology, University of Georgia, Athens, GA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Warnell School of Forestry and Natural Resources, Department of Genetics, and Department of Plant Biology, University of Georgia, Athens, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Bioscience and Biotechnology, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Bioscience and Biotechnology, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
<affiliation wicri:level="2">
<nlm:affiliation>Warnell School of Forestry and Natural Resources, Department of Genetics, and Department of Plant Biology, University of Georgia, Athens, GA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Warnell School of Forestry and Natural Resources, Department of Genetics, and Department of Plant Biology, University of Georgia, Athens, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The CRISPR technology continues to diversify with a broadening array of applications that touch all kingdoms of life. The simplicity, versatility and species-independent nature of the CRISPR system offers researchers a previously unattainable level of precision and control over genomic modifications. Successful applications in forest, fruit and nut trees have demonstrated the efficacy of CRISPR technology at generating null mutations in the first generation. This eliminates the lengthy process of multigenerational crosses to obtain homozygous knockouts (KO). The high degree of genome heterozygosity in outcrossing trees is both a challenge and an opportunity for genome editing: a challenge because sequence polymorphisms at the target site can render CRISPR editing ineffective; yet an opportunity because the power and specificity of CRISPR can be harnessed for allele-specific editing. Examination of CRISPR/Cas9-induced mutational profiles from published tree studies reveals the potential involvement of multiple DNA repair pathways, suggesting that the influence of sequence context at or near the target sites can define mutagenesis outcomes. For commercial production of elite trees that rely on vegetative propagation, available data suggest an excellent outlook for stable CRISPR-induced mutations and associated phenotypes over multiple clonal generations.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30532764</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Genome Editing in Trees: From Multiple Repair Pathways to Long-Term Stability.</ArticleTitle>
<Pagination>
<MedlinePgn>1732</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2018.01732</ELocationID>
<Abstract>
<AbstractText>The CRISPR technology continues to diversify with a broadening array of applications that touch all kingdoms of life. The simplicity, versatility and species-independent nature of the CRISPR system offers researchers a previously unattainable level of precision and control over genomic modifications. Successful applications in forest, fruit and nut trees have demonstrated the efficacy of CRISPR technology at generating null mutations in the first generation. This eliminates the lengthy process of multigenerational crosses to obtain homozygous knockouts (KO). The high degree of genome heterozygosity in outcrossing trees is both a challenge and an opportunity for genome editing: a challenge because sequence polymorphisms at the target site can render CRISPR editing ineffective; yet an opportunity because the power and specificity of CRISPR can be harnessed for allele-specific editing. Examination of CRISPR/Cas9-induced mutational profiles from published tree studies reveals the potential involvement of multiple DNA repair pathways, suggesting that the influence of sequence context at or near the target sites can define mutagenesis outcomes. For commercial production of elite trees that rely on vegetative propagation, available data suggest an excellent outlook for stable CRISPR-induced mutations and associated phenotypes over multiple clonal generations.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bewg</LastName>
<ForeName>William Patrick</ForeName>
<Initials>WP</Initials>
<AffiliationInfo>
<Affiliation>Warnell School of Forestry and Natural Resources, Department of Genetics, and Department of Plant Biology, University of Georgia, Athens, GA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ci</LastName>
<ForeName>Dong</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Warnell School of Forestry and Natural Resources, Department of Genetics, and Department of Plant Biology, University of Georgia, Athens, GA, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Bioscience and Biotechnology, Beijing Forestry University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tsai</LastName>
<ForeName>Chung-Jui</ForeName>
<Initials>CJ</Initials>
<AffiliationInfo>
<Affiliation>Warnell School of Forestry and Natural Resources, Department of Genetics, and Department of Plant Biology, University of Georgia, Athens, GA, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>11</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus</Keyword>
<Keyword MajorTopicYN="N">allele dose effect</Keyword>
<Keyword MajorTopicYN="N">biallelic</Keyword>
<Keyword MajorTopicYN="N">genome engineering</Keyword>
<Keyword MajorTopicYN="N">knockout</Keyword>
<Keyword MajorTopicYN="N">monoallelic</Keyword>
<Keyword MajorTopicYN="N">mutagenesis</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>07</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>11</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>12</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>12</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>12</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30532764</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2018.01732</ArticleId>
<ArticleId IdType="pmc">PMC6265510</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Biotechnol J. 2018 Apr;16(4):844-855</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28905515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2016 May;14(5):1291-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27071672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2017 Jul;15(7):817-823</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27936512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Nov;166(3):1292-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25225186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Jan;26(1):151-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24443519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Mar 02;9:268</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29552023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biophys. 2017 May 22;46:505-529</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28375731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2016 Jan;11(1):118-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26678082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2018 Jan 17;8(1):888</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29343825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Direct. 2016 Sep 14;11:46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27630115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Jun 17;5:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27311885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2014 Jul;11(7):705-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24972169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Oct;208(2):298-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25970829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>In Vitro Cell Dev Biol Plant. 2018;54(3):240-252</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29780216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2017 Dec;15(12):1509-1519</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28371200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE/ACM Trans Comput Biol Bioinform. 2015 Jul-Aug;12(4):799-806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26357319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2017 Jan 5;7(1):193-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27866150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Jul;215(1):351-367</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28444797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2014 Aug;12(6):797-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24854982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Aug 21;349(6250):794-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26293942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2015 Nov 06;16:232</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26541286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2017 Dec 1;37(12):1713-1726</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28985414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 May 18;12(5):e0177966</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28542349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2017 Aug;15(8):917-926</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28371222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 May 07;9:594</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29868058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biotechnol. 2015 Mar 12;15:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25879861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2016 Apr 26;15(4):707-714</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27149851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Jan 24;7:41209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28117379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Feb 27;115(9):E2040-E2047</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29440496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2017 Mar;89(6):1251-1262</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27943461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Jun 19;5:11491</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26089199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2016 Dec;14(12):2203-2216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27614091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Jul 20;5:12217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26193631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2015 Nov;40(11):701-714</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26439531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):E521-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24474801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2018 Aug;16(8):1424-1433</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29331077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2018 Sep 1;38(9):1424-1436</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29579304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2015 Sep;8(9):1428-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26057235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Sep 13;11(9):e0162169</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27622539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2017 Dec;36(12):1883-1887</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28864834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2014 Oct;12(8):1066-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24975279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2016 Oct 31;2(11):16164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27797358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2016 Sep;28(9):1998-2015</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27600536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Aug 17;6:31481</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27530958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2017 Aug;36(8):1263-1276</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28523445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2018 Oct 1;38(10):1588-1597</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30265349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Apr 07;9(4):e93806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24710347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Physiol. 2016 Jan;231(1):15-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26033759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Dec 12;8:2135</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29312390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2014 Jun 23;4:5405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24956376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Aug 31;6:32289</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27576893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Dec 20;7:1904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28066464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2017 Oct;92(1):57-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28696528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2016 Aug 18;63(4):633-646</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27499295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Feb 9;542(7640):237-241</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28005056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Mar 25;111(12):4632-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24550464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2016 Feb;14(2):808-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26132805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014;42(17):10903-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25200087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Oct 18;8:1780</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29093724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2017 May 1;37(5):665-675</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28338710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Dec 14;10(12):e0144591</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26657719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Mar 06;9:284</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29559988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2010 Aug;8(6):655-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20331529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Oct 5;171(2):470-480.e8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28919077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014;5:3216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24496117</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
<region>
<li>Géorgie (États-Unis)</li>
</region>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="États-Unis">
<region name="Géorgie (États-Unis)">
<name sortKey="Bewg, William Patrick" sort="Bewg, William Patrick" uniqKey="Bewg W" first="William Patrick" last="Bewg">William Patrick Bewg</name>
</region>
<name sortKey="Ci, Dong" sort="Ci, Dong" uniqKey="Ci D" first="Dong" last="Ci">Dong Ci</name>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
</country>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Ci, Dong" sort="Ci, Dong" uniqKey="Ci D" first="Dong" last="Ci">Dong Ci</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E74 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E74 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30532764
   |texte=   Genome Editing in Trees: From Multiple Repair Pathways to Long-Term Stability.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30532764" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020